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Abstract

In this paper we summarize our TRECVID 2020 [2] video
retrieval experiments. We participated in the Ad-hoc Video
Search (AVS) task with fully deep learning based solutions.
Our solutions contain two deep models and their variants.
One is W2VV++ [9] that vectorizes a given textual query by
concatenating the output of multiple sentence encoders such
as bag-of-words (BoW), word2vec and GRU. The other is
a newly developed model, which we term Sentence Encoder
Assembly (SEA) [11]. The novelty of the SEA model is
two-fold. First, di↵erent from the prior art that uses only a
single common space, SEA supports text-video matching in
multiple encoder-specific common spaces. Such a property
prevents the matching from being dominated by a specific
encoder that produces an encoding vector much longer than
other encoders. Second, in order to explore complementar-
ities among the individual common spaces, we propose to
train SEA by multi-space multi-loss learning. We exploit
MSR-VTT and TGIF as training data. For video represen-
tation, we use pre-trained ResNet-152 and ResNeXt-101 to
extract frame-level features, and C3D to extract segment-
level features. Video-level features are obtained by mean
pooling. Using SEA alone obtains a mean infAP of 0.236
for the 2020 task. Having SEA pre-trained on the Google’s
Conceptual Captions dataset is helpful, obtaining a higher
infAP of 0.251. We again find late average fusion of dis-
tinct models (consisting of SEA and W2VV++ trained in
varied settings) beneficial, obtaining the best infAP of 0.269
among our four submissions, and ranked at the second place
teamwise.

1 Our Approach

As in our participation in the last two years [8,10], we con-

tinue our practice of a deep learning based and concept-free

approach to the Ad-hoc Video Search (AVS) task. Given

a novel textual query s and an unlabeled video v, our ap-

proach computes their cross-modal similarity cms(s, v) by
a deep cross-modal representation learning network that is

end-to-end trained on many paired visual instances and sen-

tence descriptions. Besides the W2VV++ model [9] and

Dual Encoding [7] used in our solution for the TRECVID

2019 AVS task, this year we experiment with Sentence En-

coder Assembly (SEA, in short) [11], a novel model that

provides a more flexible and more e↵ective mechanism to

exploit distinct sentence encoders for query representation

learning.

1.1 The SEA Model

Di↵erent from the previous deep learning based models that

either uses a single sentence encoder or uses multiple sen-

tence encoders but with a single common space, the SEA
model performs text-video matching in multiple encoder-

specific common spaces.

As illustrated in Fig. 1, the query representation mod-

ule of SEA utilizes k distinct sentence encoders, denoted as

{et,2, et,2, . . ., et,k}. Accordingly, there are k cross-modal

matching subnetworks, each corresponding to a specific sen-

tence encoder. Each subnetwork, indexed by i, consists

of two fully connected (FC) layers, one on the text side

to transform et,i(s) into a dc,i-dimensional vector, and the

other FC on the video side that transforms the video fea-

ture vector f(v) into another dc,i-dimensional vector. Con-

sequently, the sentence-video semantic relevance, denoted

as cmsi(s, v), is computed as the cosine similarity between

the two embedding:

cmsi(s, v) := cosine( FCt,i(et,i(s))| {z }
text embedding

, FCv,i(f(v))| {z }
video embedding

),

(1)

where FCt,i and FCv,i indicate the two FC layers, each fol-

lowed by a tanh function to increase their learning capacity.

By simply averaging the similarities computed in the in-

dividual common spaces, we have the overall cross-modal

similarity as

cms(s, v) :=
1

k

kX

i=1

cmsi(s, v). (2)

Note that we do not go for more complicated alternatives,

e.g . weighing the individual similarities by self-attention

mechanisms. Rather, we opt for this simple combination

strategy, not only for preventing the risk of over-fitting.

Such a strategy also encourages the individual common
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Figure 1: Conceptual diagram of the Sentence Encoder Assembly (SEA) model [11]. The key idea of SEA is to leverage multiple
sentence encoders {et,1, et,2, . . ., et,k} and consequently build multiple encoder-specific common spaces for computing the cross-modal
similarity between a given textual query s and an unlabeled video v.

spaces to be good enough to be combined, as they are set

to be equally important.

1.1.1 Choice of Sentence Encoders

We experimented with the following five sentence encoders:

• Bag-of-Words (BoW) [6]

• word2vec (w2v) [13]

• NetVlad [1]

• bi-GRU [4]

• BERT [5]

Varied combinations of the sentence encoders allow us to im-

plement specific versions of the SEAmodel to handle queries

of varying complexity.

1.1.2 Choice of Video Features

We use the same 4,096-dimensional ResNet+ResNeXt fea-

ture as in last year [10]. In addition, we extract a 2,048-

dimensional C3D feature from video data, obtaining a com-

bined ResNet+ResNeXt+C3D feature of size 6,144.

1.1.3 Choice of (Pre-)Training Data

Following our TV19 system [10], MSR-VTT [15] and

TGIF [12] are merged as a common training set, while

the development set of the TRECVID 2016 Video-to-Text

Matching task [3] is used as an external validation set. How-

ever, di↵erent from [10] where all the models were trained

from scratch, this year we experiment with the pre-training

strategy. Some of the models, subject to the applicability

of their video features, are pre-trained on the Google’s Con-

ceptual Captions (GCC) dataset [14], see Table 1.

2 Submissions

Based on the performance of the individual models and their

combinations on the previous AVS tasks, we submitted the

following four runs:

• Run 4 : Model 4c, using SEA with BoW and w2v as its

sentence encoders and ResNeXt-ResNet-C3D as video

features.

• Run 3 : Model 3b, using SEA with BoW and NetVlad

as its sentence encoders, ResNeXt-ResNet as video fea-

tures, and pre-trained on GCC.

• Run 2 : Late average fusion of three base models, i.e.
3b, 3c and 4c.



Table 1: Varied models used in our experiments. A model postfixed with the letter b indicates that the model is pre-trained on the
GCC dataset. As GCC is an image collection, it cannot be used to pre-train models that uses the C3D feature.

Model Network Sentence Encoders Video Features Pre-training

1 W2VV++ BoW ResNet+ResNeXt ⇥
1b W2VV++ BoW ResNet+ResNeXt

p

1c W2VV++ BoW ResNet+ResNeXt+C3D ⇥

2 W2VV++ NetVlad ResNet+ResNeXt ⇥
2b W2VV++ NetVlad ResNet+ResNeXt

p

2c W2VV++ NetVlad ResNet+ResNeXt+C3D ⇥

3 SEA BoW, NetVlad ResNet+ResNeXt ⇥
3b SEA BoW, NetVlad ResNet+ResNeXt

p

3c SEA BoW, NetVlad ResNet+ResNeXt+C3D ⇥

4 SEA BoW, w2v ResNet+ResNeXt ⇥
4b SEA BoW, w2v ResNet+ResNeXt

p

4c SEA BoW, w2v ResNet+ResNeXt+C3D ⇥

5 SEA BoW, w2v, bi-GRU ResNet+ResNeXt ⇥
5b SEA BoW, w2v, bi-GRU ResNet+ResNeXt

p

5c SEA BoW, w2v, bi-GRU ResNet+ResNeXt+C3D ⇥

6 SEA BoW, w2v, bi-GRU, BERT ResNet+ResNeXt ⇥
6b SEA BoW, w2v, bi-GRU, BERT ResNet+ResNeXt

p

6c SEA BoW, w2v, bi-GRU, BERT ResNet+ResNeXt+C3D ⇥

• Run 1 (primary run): Late average fusion of four base

models, i.e. 3b, 3c, 4b and 4c.

The performance of our four runs and the base models

on the TRECVID 2020 AVS task and all the previous AVS

tasks is summarized in Table 2. It can be observed that pre-

training is helpful. Adding the C3D feature is also helpful.

Among the four runs, our primary run (Run 1 ) is the best.

This is in line with our previous findings [8, 10] that late

fusion always boosts the performance further.

An overview of the AVS task benchmark is shown in Fig.

2. Team-wise, our submissions are ranked at the second

place among all the submissions.
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G. Quénot. Trecvid 2020: comprehensive campaign for
evaluating video retrieval tasks across multiple application
domains. In Proceedings of TRECVID 2020. NIST, USA,
2020.

[3] G. Awad, J. Fiscus, D. Joy, M. Michel, A. Smeaton,
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Figure 2: Overview of the TRECVID 2020 AVS benchmark evaluation.
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